
M-Lab Fellowship Report
SANJAY CHANDRASEKARAN, University of California Santa Barbara, USA

IRENE PATTARACHANYAKUL, University of California Santa Barbara, USA

PUNNAL ISMAIL KHAN, University of California Santa Barbara, USA

ETHAN WU, University of California Santa Barbara, USA

SAM LIANG, University of California Santa Barbara, USA

ELIZABETH BELDING, University of California Santa Barbara, USA

ARPIT GUPTA, University of California Santa Barbara, USA

1 INTRODUCTION
In a post-pandemic world, we have become heavily reliant on networked applications such as video

streaming (e.g., YouTube [8], Nextflix [12], Twitch [17]) and video conferencing (e.g., Zoom [18],

Teams [10], Google Meet [7]). These applications must use feedback about the state of congestion

in the network to provide a high quality of experience (QoE) to the end user. These developments

have shifted the focus toward last-mile networks, which are generally the least-provisioned part of

the network. Recent technological innovations enable these last-mile service providers to support

high-throughput and low-latency. However, the traffic in last-mile networks is still susceptible to

congestion events [5], caused by issues such as bufferbloat [6] that contribute to latency inflation

and as a result, degrade the QoE of the application [11].

Our proposal focused on two main research questions:

(1) Can we characterize any biases within M-Lab’s active measurements?

(2) Can we draw a relationship between QoE and lightweight metrics, collected through both

active and passive techniques?

To this end, we provide insight into potential biases and limitations of active measurements due

to the duration and frequency of ephemeral events. We also analyze the correlation between

downstream RTT inflation and the QoE of a common video conferencing applications, Google

Meet.

We first focus on characterizing the presence of ephemeral congestion events in our campus

network that spans multiple residential buildings and academic facilities. The goal of this charac-

terization is to understand potential biases and limitations when using active measurements to

detect ephemeral congestion events. We use packet-level traces that are passively collected from the

network’s border router that sees all traffic entering or leaving the network. We extract last-mile

RTT measurements from these packet traces by computing the delays that packets experience

between end-hosts and the campus’ border router. We use this last-mile RTT metric as a proxy for

congestion in the last-mile network.

Next, we develop an active measurement framework using Raspberry Pis [14] deployed around

campus to run video conferencing sessions while recording the QoE of these applications. We use

this setup to understand the correlation between the presence of ephemeral events and degradations

in application QoE (e.g., lower resolution, loss of frames, rebuffering).

Our main contribution is to highlight the presence of ephemeral congestion events in last-mile

networks to help refine our methodology for active measurements and network monitoring. Our

analysis shows that almost 23% of active hosts observe at least one ephemeral event in an hour. At

any time instance, approximately 150 (around 0.3%) hosts experience a short-lived congestion event.

Moreover, we show that the distributions of both the duration of an ephemeral congestion event



2
Sanjay Chandrasekaran, Irene Pattarachanyakul, Punnal Ismail Khan, Ethan Wu, Sam Liang, Elizabeth Belding, and Arpit

Gupta

and the length of the gap between two such events exhibit heavy-tailed behavior. This observation

implies that most of these events are very short-lived.

2 PASSIVE MEASUREMENTS
In this section, we describe the passive measurements we used for our analysis along with the

methodology for extracting the last-mile RTT samples associated with each active host. Additionally,

we are able to map hosts to different access points, rooms, and buildings within our campus network

to understand the spatial nature of latency inflations.

2.1 Collecting packet traces
To collect packet traces from our campus network’s border router, we mirror traffic from our border

routers to an Intel Tofino-based programmable switch [2] that anonymizes and load balances

traffic between our collection servers. The collection servers use tcpdump to capture and save the

anonymized packet traces. However, for each captured packet, instead of using the timestamp that

is generated locally by tcpdump, we rely on the hardware timestamp added by our switch to each

packet’s metadata. This approach ensures that the timing information and ordering for each packet

are as close as possible to ones observed at the border router and that the timing information itself

is not skewed by local processing delays and clock skews.

The average data rate at our border router was approximately 9 Gbps, which translates to more

than a million packets per second. Load-balancing the traffic over eight different ports (on two

different servers) ensured minimal packet drops at the collection servers because each core had

to processes at most 150 k packets/second. For our passive data analysis, we used packet traces

collected from four different weekdays (4/26/22-4/29/22
1
); the hour was always from 12:15 am

to 1:15 pm, at a time when we noticed peak activity on our campus network. Applying this

data-collection pipeline, we collected data from approximately 54 k distinct internal hosts that

communicated with about 924 k distinct external hosts, generating over 91M different flows and

exchanging a total of 16.5 B packets.

2.2 Extracting last-mile RTTs.
To extract last-mile RTT samples from the collected packet traces, we use the difference in times-

tamps between the downstreamTCP data packet and the corresponding upstream acknowledgement

packet. However, when computing these last-mile RTT samples, we have to filter out samples that

are not representative of last-mile network delays. In particular, we need to filter out RTT samples

for retransmitted packets, delayed ACKs, and selected/stretched ACKs [3]. Out of a total of 11.6 B

TCP packets in the dataset, we curated a dataset with 1.6 B (14%) valid last-mile RTT samples after

filtering. The median last-mile RTT for our dataset is 12 ms and for more than 5 % of the samples,

we observe last-mile RTTs inflated by an order of magnitude.

While it is possible to leverage existing tools such as tcptrace [9] for filtering RTT samples,

we developed a custom Spark-based [1] streaming analytics pipeline for this task. Compared to

tcptrace, our pipeline effectively uses all the available CPU cores and is able to perform the task of

extracting and filtering last-mile RTT samples from our packet traces at least an order of magnitude

faster than tcptrace. Below we discuss how we sanitized these RTT values to accurately represent

the downstream RTT for each host.

2.2.1 Filter out delayed ACKs. TCP allows a receiver to reduce the number of acknowledgements

by delaying the transmission of an acknowledgement for data packets whose size is not equal to

the maximum MTU. Any such delays in ACK delays will skew our estimation of network-level

1
All classes were in session during this week.



M-Lab Fellowship Report 3

Fig. 1. Cases where retransmissions can cause incorrect RTT samples

delay. Thus, we only consider samples for full-sized packets. Also, TCP uses the PSH flag to indicate
that the receiver should not wait for additional data. Thus, since the presence of a PSH flag ensures

that the RTT sample is only measuring the network-level delays, we consider all samples where

the PSH flag is set for the downstream data packet, even if it is not full-sized. As a result, we filtered

2.5 % of RTT samples from this step.

2.2.2 Disregard retransmitted packets. When capturing packets between a sender and receiver, we

cannot determine the exact times when the packets are received and sent by the downstream host.

For example, a sender may choose to retransmit data based on a timeout or because of a request

from the receiver. In this case, we cannot determine if an ACK was sent by the receiver before or

after it received the retransmitted portion of the data. To avoid over-estimating last-mile latency

due to this uncertainty, we do not compute RTT samples for any data packet that is retransmitted.

These cases are further illustrated in Figure 1. As a result of this step, we further filtered out 0.37 %

of the total RTT samples. Note that we should expect concurrence of latency inflations and packet

losses. Thus, we might miss out on reporting some of the transient congestion events for a subset

of hosts that see high retransmission rates. f

2.3 Adding Spatial Attributes
Ephemeral congestion events have temporal as well as spatial attributes, and characterizing these

events requires understanding both when (in time) and where (in space) they occur and how long

they last. To characterize the spatial behavior of these congestion events, we map end-hosts to

different coarser spatial granularities, such as access points (APs), rooms, and buildings. To this end,

we use Aruba’s Advanced Monitoring (AMON) data that enables end-host mapping to APs. The

naming convention for each AP on our campus network uniquely specifies its location attributes,

such as room and building identifiers. We used this information to map each host to a specific room

and building. Our campus network has deployed approximately 4 k APs in 2.5 k separate rooms

across 250 buildings. Out of a total of 54 k local hosts, we are able to map about 23 k (i.e., 43 %) to

an AP.

3 ACTIVE MEASUREMENTS
In this section we describe our active measurement setup using Raspberry Pi nodes that we deployed

across our campus. Each device records the QoE of its video conferencing session using the webRTC

stats, as well as passively captures all incoming and outgoing packets.

3.1 Deploying end hosts
We deployed Raspberry Pi devices around our campus to mimic end hosts on the network and

provide us with ground truth about the quality of experience for video conferencing and video

streaming applications. Each of these devices is managed using a centralized SaltStack [15] server.

We created automated programs with Selenium to control browser functionality for running



4
Sanjay Chandrasekaran, Irene Pattarachanyakul, Punnal Ismail Khan, Ethan Wu, Sam Liang, Elizabeth Belding, and Arpit

Gupta

applications on the Raspberry Pis. We used power-over-ethernet for a subset of device deployments

where there are limited power outlets.

3.2 Measuring QoE
For this study, we used QoE measurements from two video conferencing applications: Google

Meet and Microsoft Teams. For each video conferencing session, we host a call playing a looped

video. Each raspberry pi is ordered to join the call with the microphone muted and no video feed.

Using the webRTC stats from the browser, we can see measure attributes of the call at a 1-second

granularity. We focus on the frames-per-second, frames dropped, and rebuffering time which we

use as a proxy for the QoE of the video call.

4 EPHEMERAL CONGESTION EVENTS
This section will first describe our methodology for identifying ephemeral congestion events.

We then characterize their spatial and temporal properties that can inform the future design of

telemetry systems capable of detecting these events in last-mile networks in (near) real-time.

4.1 Defining ephemeral events
Informally, for last-mile networks, an ephemeral congestion event is a short period of time during
which there is an inflation in (last-mile) RTT that is high enough to adversely affect user-perceived
QoE for video applications (e.g., video streaming, video conferencing, online gaming, etc.) that are

running on end hosts inside the last-mile network.

To formally define an ephemeral congestion event for a given host in a last-mile network (i.e.,

unique dstIP), we first generate a time series that consists of all the valid RTT samples associated

with the downstream host’s data packets. For this time-series, we seek to identify periods of time

(windows) when the inflation in RTT values is “abnormally” high. To this end, we window the time

series data and compute a representative aggregate metric. Deciding on an appropriate window

size requires making a compromise. On the one hand, the ability to detect short-lived congestion

events argues for selecting as small a window as possible (i.e., tens or hundreds of msec). On the

other hand, to ensure that there are sufficiently many samples in a window for identifying such an

event with high confidence requires considering larger window sizes (i.e., seconds).

Note that our decision to ignore windows with fewer samples might contribute to the under-

reporting of transient congestion events. However, in the absence of any ground truth, we argue

that with these choices, we can ensure that the reported events are largely insensitive to noisy

observations, possibly at the cost of not detecting all possible ephemeral congestion episodes. Our

current methodology will also miss reporting ephemeral events experienced by hosts that mostly

send (or receive) UDP packets
2
. Also note that our definition of ephemeral congestion events is

inclusive in the sense that it also accounts for instances of congestion that are long-lived and may

reflect more conventional episodes of congestion.

To decide which representative aggregate metric to compute and report for each window, Fig-

ure 2a shows the time series of RTT samples for a randomly selected host from our last-mile RTT

dataset. We observe that for a majority of the samples, the last-mile RTT values are in the the

10 − 25 ms range. However, about 5% of RTT samples appear to be inflated by over one order of

magnitude. While fully consistent with the well-known bursty nature of Internet traffic, we expect

such random instances of significant RTT inflation to have only a marginal impact on QoE for

most applications, unless the fraction of the total number of samples in a window that experience

this type of RTT inflation is significant (at least 1% for video conferencing applications [13]). This

2
Most video conferencing applications use UDP as transport protocol.



M-Lab Fellowship Report 5

0 20 40 60 80 100 120
Time (seconds)

200

400

600

RT
T 

(m
s)

(a) Raw samples.

0 20 40 60 80 100 120
Time (seconds)

200

400

600

RT
T 

(m
s)

max
95th
50th

(b) Aggregate statistics.

observation suggests that we consider large quantiles (e.g., 95
𝑡ℎ

percentile) of the empirical distri-

bution of RTT values as the representative aggregate statistic for identifying ephemeral congestion

events. To illustrate, Figure 2b shows the median (50
𝑡ℎ

percentile), 95
𝑡ℎ

percentile, and max (100
𝑡ℎ

percentile) of the last-mile RTT values using a ten-second sliding window for the same host. We

observe that while using extreme quantiles (e.g., max) for quantifying RTT inflation results in

overly noisy reporting, utilizing mid-range quantiles such as the median is not sufficiently sensitive

to identify short-lived instances of RTT inflation. Thus, we use the 95
𝑡ℎ

percentile value, ensuring

that we observe at least 5 inflated samples while reporting a RTT inflation event.

Previous studies showed that last-mile RTTs greater than 100 ms can severely degrade QoE for

most real-time applications [13, 16]. We report all ten-second sliding windows, sliding one second

at a time, with more than a hundred samples for which the 95
𝑡ℎ

percentile of last-mile RTT values

exceeds 100 ms as the ones experiencing an ephemeral congestion event.

4.2 Characterizing Ephemeral Events
Spatial attributes. Given our formal definition of what constitutes an ephemeral congestion event,

we first analyze our last-mile RTT dataset to understand and quantify the pervasiveness of these

events in terms of affected hosts. To this end, we compute the total number of distinct ephemeral

events experienced by each active host in one hour. We observe that almost 23% (about 13 k) of all

active hosts experienced at least one ephemeral event, indicating that these events are not spatially

skewed (i.e., limited to a small number of hosts). Similarly, at coarser spatial granularity, 63% (i.e.,

1.5 k) of APs experience at least one ephemeral event. Here, we mark a window as ephemeral for an

AP if the 95
𝑡ℎ

percentile of all valid RTT samples from all hosts associated with this AP during that

window exceeds 100 ms. Given that there is a single AP in most rooms on our campus network,

50 100 150
Number of affeceted hosts

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac
tio
n 
of
 w
in
do
w
s

Hosts
APs
Rooms
Buildings

(a) More than hundred hosts experience ephemeral
congestion events at any given time.

(b) Spatial behavior exhibited by ephemeral events.



6
Sanjay Chandrasekaran, Irene Pattarachanyakul, Punnal Ismail Khan, Ethan Wu, Sam Liang, Elizabeth Belding, and Arpit

Gupta

1 10 100 1000
Duration (seconds)

0.0001

0.0010

0.0100

0.1000

1.0000

C
C

D
F

ephemeral event duration
inter-ephemereal event duration

(a) Hosts

1 10 100 1000
Duration (seconds)

0.0001

0.0010

0.0100

0.1000

1.0000

C
C
D
F

ephemeral event duration
inter-ephemereal event duration

(b) APs

1 10 100 1000
Duration (seconds)

0.0001

0.0010

0.0100

0.1000

1.0000

C
C
D
F

ephemeral event duration
inter-ephemereal event duration

(c) Buildings

Fig. 4. Temporal behavior exhibited by ephemeral events.

the findings at the granularity level of rooms are similar to those at the AP-level, which in turn

have the same trend as those at the level of individual buildings.

In view of the pervasive nature of the identified ephemeral congestion events in our campus

network, we next examine whether ephemeral events are skewed towards certain time intervals. To

this end, we compute for each window the number of hosts/APs/rooms/buildings that experience

ephemeral events in that window and show in Figure 3a the resulting distribution functions. For

example, we observe between 120 − 160 (around 0.3%) affected hosts in each window. Moreover,

even though the number of affected hosts is relatively stable over time (i.e., around 150), the set of

hosts experiencing ephemeral events keeps changing over time (not shown here).

To better understand the spatial structure of these ephemeral events, we explore if the ephemeral

congestion events exhibit a “cluster-within-cluster” structure. Specifically, we check whether the

measured events at a building are attributable to a cluster of APs within that building. Similarly,

whether the observed events at an individual AP are attributable to a cluster of hosts associated

with that AP. Figure 3b shows this behavior for a randomly selected time window. We observe that

a small set of buildings contribute to the ephemeral congestion events at the campus level. For a

randomly selected such building (marked red), only a small subset of APs experience ephemeral

congestion events, and for a randomly chosen such AP (marked red), only a small subset of hosts

suffer from ephemeral congestion events. We confirmed that this cluster-within-cluster property

holds irrespective of our choice of window or selection of building or AP.

Temporal attributes. Next, focusing our attention on the temporal behavior exhibited by the

measured ephemeral congestion events, we are interested in two metrics: (1) affected duration, i.e.,

the length of ephemeral events) and (2) unaffected duration, i.e., the gap between two ephemeral

events. Figure 4a shows the distribution of these metrics for all ephemeral events across all hosts.

The graph shows the complementary CDFs (CCDFs) on a log-log scale, where an approximately

straight line is a strong indication of heavy-tailed behavior [4]. From Figure 4a, we can conclude

that the durations of ephemeral congestion events exhibit heavy-tailed behavior; that is, most

events are short-lived with a median value of about 5 seconds and a small fraction of events (some

0.7%) last for more than one minute. This finding implies that network telemetry systems for

last-mile networks have to be able to monitor last-mile RTTs at very small time scales to accurately

detect ephemeral congestion events.

We observe skewness or high variability in the metric that quantifies the gap between two

ephemeral congestion events is not consistent with heavy-tailed behavior. However, the saturation

near one hour at the right tail of the CCDF is an artifact of the finite time horizon of the dataset. We

expect that repeating this analysis for datasets that have been collected for longer periods of time

will also show heavy-tailed behavior for the lengths of the gaps between two ephemeral congestion



M-Lab Fellowship Report 7

Host AP Room Building

Percentile of window
93 −0.92 −0.86 −0.84 −0.77
94 −0.92 −0.85 −0.84 −0.76

Default: 95 96 −0.92 −0.85 −0.83 −0.76
97 −0.92 −0.85 −0.83 −0.75

Sliding window (s)
8 −0.97 −0.90 −0.88 −0.81
9 −0.95 −0.87 −0.86 −0.78

Default: 10 11 −0.91 −0.83 −0.82 −0.75
12 −0.89 −0.81 −0.80 −0.73

RTT Threshold (ms)
90 −0.92 −0.85 −0.83 −0.76
95 −0.92 −0.85 −0.83 −0.76

Default: 100 105 −0.93 −0.85 −0.83 −0.76
110 −0.93 −0.85 −0.83 −0.76

Table 1. Sensitivity analysis: shows slope for ephemeral events’ distribution (CCDF) on a log-log plot. We
observe heavy-tailed behavior for all combinations of parameters at all four spatial granularities.

events. This finding would imply that the likelihood of seeing an ephemeral event is higher if we

have observed one in the recent past compared to not having observed an event for some time.

Figure 4b and Figure 4c show the CCDFs of these two metrics at the granularity of APs and

buildings, respectively. We do not include the result for rooms because it mimics the trend for

APs. We observe that even though when compared to Figure 4a, the shape of these distributions

is slightly different, the same overall findings apply; that is, the considered metrics are heavy-

tailed, implying that ephemeral congestion events are scale-invariant in time, irrespective the

level of spatial granularity. Together, these empirical observations motivate further studies into

the fractal-like spatial-temporal structure of measured ephemeral congestion events in last-mile

networks.

Sensitivity analysis. We need to ensure that the above observations are not an artifact of our

parametric choices. More specifically, we are interested in demonstrating that the heavy-tailed

and spatial-invariance behavior is not sensitive to our specific parameters. To this end, we run an

extensive sensitivity analysis, where we perturb each of the three parameters, i.e., window length

(10±2 s), percentile (95±2%), and threshold (100± 10 ms), one at a time. For each parameter, we

report the slope of the line for ephemeral events’ duration on the log-log plot. Our analysis shows

that both the heavy-tailed and scale-invariance behavior are insensitive to specific parameters

(see Table 1 in Appendix). We also confirmed that the spatial properties are also agnostic to these

parameters.

4.3 Detecting ephemeral events
Now that we understand the nature of ephemeral events, we can try to understand how we can

detect them using active measurements. For each host experiencing an ephemeral event, we try to

understand the right sampling frequency and duration needed to still identify congestion events,

with the intuition that we can determine the Nyquist rate for these RTT values if the RTT inflations

are not abrupt. For each host, we measure the time between RTT samples transitioning between

10 ms and 100 ms. A CDF of this duration for all hosts is shown in Figure 5a. We observe this

transition between normal and inflated RTTs occurs within a very short period of time, making

it difficult to measure with active measurements. Figure 5b measures the slope for each of these

transitions to see how gradual the RTT inflation is. The average transition happens in less than a

second making active measurements infeasible for monitoring such ephemeral events.



8
Sanjay Chandrasekaran, Irene Pattarachanyakul, Punnal Ismail Khan, Ethan Wu, Sam Liang, Elizabeth Belding, and Arpit

Gupta

(a) Time difference (b) Entropy

Fig. 5. Measuring transition between inflated (greater than 100ms) and non-inflated (less than 10ms) states

5 IMPACT ON QOE
In this section we present a case study for a single Raspberry Pi deployed in the library of UCSB’s

campus that joins a Google Meet video call and receives poor QoE. We capture data passively

alongside running active measurements on a raspberry pi. We narrow our focus to just one

Raspberry Pi due to the processing time for the passive measurements, requiring us to filter on just

the hosts that we control. With more time, we will extend this analysis to higher granularities such

as access point or building, which will require us to compute RTTs for all hosts in the data. At first

when we try to apply our ephemeral event methodology, we run into a limitation. Our calculation

of downstream RTT is only applicable to TCP packets however a majority of real-time video

conferencing sends data over UDP. Understanding how to apply our ephemeral event methodology

to hosts sending mostly UDP traffic is still an open task that we are working on. Currently, we

utilize RTT samples from other TCP flows originating from the same host to proxy for congestion

that the UDP flows would also receive. On our raspberry pi joining a Google Meet session for 15

minutes, we only observe 96 valid RTT samples over the entire call which doesn’t suffice for our

ephemeral event methodology. In Figure 6 we show the raw RTT values over time along with

the QoE measurements from the webRTC stats including frames per second, dropped frames, and

rebuffering time. We can see at around 500 seconds latency inflations occur for the TCP samples

we can measure and as a result we see reduced FPS, more frames dropped, and rebuferring occur

around that time.

6 LIMITATIONS & FUTUREWORK
Developing our active measurement pipeline to get ground truth measurements within our campus

network has been challenging. Getting coverage over different parts of our campus took time as

supply chain issues caused vendors to be out of stock of raspberry pis. Over the past 4 months we

have accumulated over 100 raspberry pi devices for our deployment. Additionally, automating the

browser interactions with video conferencing applications can be fragile. Applications update the

HTML on their page constantly, leading to scripts needing frequent updates. Additionally, Google

has added in counter-measures to limit bot usage that require two-step mobile authentication

making scaling up the deployment difficult.

One important next step is to understand howwe canmeasure ephemeral congestion events when

there is mostly UDP packets. We also need to scale up the data processing to analyze data for all

hosts during the periods we are running active measurements. We hypothesize that some attributes



M-Lab Fellowship Report 9

0 100 200 300 400 500 600 700 800
Time

0

25

50

75

100

125

150

175

Do
wn

st
re
am

 R
TT

 (m
s)

(a) raw RTT values

0 200 400 600 800 1000
Time

5

10

15

20

25

Fr
am

es
 p
er
 S
ec
on

d

(b) FPS

0 200 400 600 800 1000
Time

450

500

550

600

650

700

750

800

Fr
am

es
 D
ro
pp

ed

(c) Cumulative dropped frames

0 200 400 600 800 1000
Time

60

80

100

120

140

Re
bu

ffe
rin

g 
Ti
m
e

(d) Rebuffering

Fig. 6. Measurements for a single Raspberry Pi

at the access-point-level or room-level may be useful in identifying or predicting congestion at a

lower sampling frequency.

7 CONCLUSION
To sum up, we show that almost 23% of hosts in our campus network experience at least one

ephemeral event in an hour, with more than a hundred hosts suffering congestion at any given

time. We also show that both the duration of these events and the gaps between them are heavy-

tailed. Most of these events are short-lived and are therefore difficult to detect with most existing

network telemetry systems. We also report on a spatial scale-invariance property of these measured

events. The signal at the host level appears to be too noisy to poll at a reasonable rate with active

measurements. We hypothesize that monitoring downstream RTT inflations at the access-point-

level or building-level with normalized values may provide us with a smoother signal.

Our initial analysis motivates further investigations. Specifically, we should explore if we observe

similar behavior in other campus networks or more complex last-mile networks. In particular, we

argue that this characterization is critical for designing next-generation telemetry systems for

last-mile networks. These properties motivate future research explorations into how to model

real-world ephemeral congestion events and whether or not they can be predicted. It is also worth

exploring if it is possible to identify if hosts that mainly send/receive UDP packets (e.g., video

conferencing) are experiencing ephemeral congestion events by monitoring latency inflation at



10
Sanjay Chandrasekaran, Irene Pattarachanyakul, Punnal Ismail Khan, Ethan Wu, Sam Liang, Elizabeth Belding, and Arpit

Gupta

coarser spatial granularities. To encourage and support further research in this area, we will open-

source our curated last-mile RTT dataset as well as webRTC stats collected through our active

measurement pipeline.



M-Lab Fellowship Report 11

REFERENCES
[1] Apache PySpark. https://spark.apache.org/docs/latest/api/python/, 2022.
[2] Barefoot networks wedge 100bf-32x programmable data center switch. https://www.edge-core.com/productsInfo.

php?id=335, 2022.

[3] Chen, X., Kim, H., Aman, J. M., Chang, W., Lee, M., and Rexford, J. Measuring tcp round-trip time in the data plane.

In Proceedings of the Workshop on Secure Programmable Network Infrastructure (2020).
[4] Crovella, M. E., and Taqq, M. S. A Tool For Estimating the Heavy Tail Index from Scaling Properties

. https://www.cs.bu.edu/fac/crovella/aest.html/, 1999.

[5] Fontugne, R., Shah, A., and Cho, K. Persistent last-mile congestion: Not so uncommon. In Proceedings of the ACM
Internet Measurement Conference (2020), pp. 420–427.

[6] Gettys, J. Bufferbloat: Dark buffers in the internet. IEEE Internet Computing 15, 3 (2011), 96–96.
[7] Google Meet. https://meet.google.com/, 2022.

[8] Youtube. http://www.youtube.com/, 2022.

[9] tcptrace. https://linux.die.net/man/1/tcptrace, 2022.

[10] Microsoft teams. https://www.microsoft.com/en-us/microsoft-teams, 2022.

[11] Narayanan, A., Zhang, X., Zhu, R., Hassan, A., Jin, S., Zhu, X., Zhang, X., Rybkin, D., Yang, Z., Mao, Z. M., Qian,

F., and Zhang, Z.-L. A variegated look at 5g in the wild: Performance, power, and qoe implications. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (New York, NY, USA, 2021), SIGCOMM ’21, Association for Computing

Machinery, p. 610–625.

[12] Netflix. https://www.netflix.com/, 2022.

[13] Ozer, S. Fastest path to low latency services: How can cable operators deliver consistent latency by following an

efficient and future-proof design path? In 2021 Technical Forum SCTA / NCTA / CableLabs (2021).
[14] Raspberry pi foundation. https://www.raspberrypi.org/, 2022.

[15] Saltstack. https://github.com/saltstack/salt, 2022.

[16] Sevcik, P., Jones, A., and Wetzel, R. 2020 internet latency benchmark report. In NetForecast (2021).
[17] Twitch. https://www.twitch.tv/, 2022.

[18] Zoom. https://www.zoom.us/, 2022.

https://spark.apache.org/docs/latest/api/python/
https://www.edge-core.com/productsInfo.php?id=335
https://www.edge-core.com/productsInfo.php?id=335
https://www.cs.bu.edu/fac/crovella/aest.html/
https://meet.google.com/
http://www.youtube.com/
https://linux.die.net/man/1/tcptrace
https://www.microsoft.com/en-us/microsoft-teams
https://www.netflix.com/
https://www.raspberrypi.org/
https://github.com/saltstack/salt
https://www.twitch.tv/
https://www.zoom.us/

	Abstract
	1 Introduction
	2 Passive measurements
	2.1 Collecting packet traces
	2.2 Extracting last-mile RTTs.
	2.3 Adding Spatial Attributes

	3 Active measurements
	3.1 Deploying end hosts
	3.2 Measuring QoE

	4 Ephemeral Congestion Events
	4.1 Defining ephemeral events
	4.2 Characterizing Ephemeral Events
	4.3 Detecting ephemeral events

	5 Impact on QoE
	6 Limitations & Future Work
	7 Conclusion
	References

