
Detecting BitTorrent Blocking

Marcel Dischinger† Alan Mislove†‡ Andreas Haeberlen†‡ Krishna P. Gummadi†

†MPI-SWS ‡Rice University

ABSTRACT

Recently, it has been reported that certain access ISPs are surrep-
titiously blocking their customers from uploading data using the
popular BitTorrent file-sharing protocol. The reports have sparked
an intense and wide-ranging policy debate on network neutrality
and ISP traffic management practices. However, to date, end users
lack access to measurement tools that can detect whether their ac-
cess ISPs are blocking their BitTorrent traffic. And since ISPs do
not voluntarily disclose their traffic management policies, no one
knows how widely BitTorrent traffic blocking is deployed in the
current Internet. In this paper, we address this problem by design-
ing an easy-to-use tool to detect BitTorrent blocking and by pre-
senting results from a widely used public deployment of the tool.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations; C.2.5
[Computer-Communication Networks]: Local and Wide-Area
Networks; C.4 [Performance of Systems]

General Terms: Measurement, Performance, Experimentation

Keywords: BitTorrent, blocking, network measurement

1. INTRODUCTION
Access ISPs like residential cable and DSL providers are increas-
ingly deploying middleboxes, such as traffic shapers, blockers, and
firewalls, to monitor and manage their customers’ traffic. These
middleboxes classify and manipulate flows belonging to different
applications according to ISP-specified policies [1, 2]. As traffic
management policies are often driven by business interests (e.g.,
peering or transit agreements), many ISPs do not publicly disclose
the details of their middlebox deployments. Thus, end users today
may not know about the presence of the middleboxes, and often do
not understand the impact of ISP traffic management policies on
the performance of their applications.
Recently, it has been reported that certain access ISPs [3, 4] are

surreptitiously blocking their customers from uploading data us-
ing the popular BitTorrent file-sharing protocol. The ISPs were
found to tear down TCP connections identified as BitTorrent flows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’08, October 20–22, 2008, Vouliagmeni, Greece.
Copyright 2008 ACM 978-1-60558-334-1/08/10 ...$5.00.

by sending forged TCP reset (RST) packets to the end hosts. These
reports of blocking sparked an intense and wide-ranging policy de-
bate between ISPs, consumer advocacy groups, web site operators,
and government agencies on acceptable ISP traffic management
practices and network neutrality [5]. However, to date, end users
lack access to measurement tools that can detect whether their ac-
cess ISPs are blocking BitTorrent traffic. As a result, no one knows
how widely BitTorrent is blocked in the current Internet.
In this paper, we present a large-scale measurement study ofBit-

Torrent traffic blocking by ISPs. To conduct the study, we designed
a tool called BTTest, which enables end users to test for blocking
on their own access links. BTTest runs as a Java applet within the
user’s web browser; it emulates a BitTorrent flow to a server un-
der our control, and it checks whether this connection is aborted
with TCP reset packets that neither endpoint has sent. BTTest is
easy to use, which enables us to gather data about a large number
of ISP links. The test achieves reproducible results because it runs
in a controlled environment, and its analysis is conservative in the
sense that it checks for a very specific blocking technique, namely
interrupting flows with forged connection reset packets.
We deployed BTTest on publicly accessible test servers and in-

vited end users around the world to test their links. Over a period
of 18 weeks, more than 47,300 end users in 1,987 ISPs world-wide
ran BTTest. We examined the traces gathered during these tests for
evidence of BitTorrent blocking. Our findings show that BitTorrent
uploads are being blocked for a significant number of hosts, mostly
from ISPs located in the USA and in Singapore. While our cur-
rent study is limited to detecting BitTorrent blocking, it represents
a first step towards the broader goal of making ISP policies more
transparent to end users.
The rest of the paper is organized as follows. Section 2 provides

an overview of the efforts by ISPs to shape BitTorrent traffic and
discusses existing work related to detecting such behavior. Sec-
tion 3 describes the design of our BTTest tool and the methodology
used to gather traces at scale. In Section 4, we explain how BTTest
analyzes the traces to detect BitTorrent blocking, and Section 5
presents the findings of our measurement study. We conclude in
Section 6 with a discussion of open challenges and potential future
work.

2. BACKGROUND AND RELATED WORK
BitTorrent [6] is a popular peer-to-peer file-sharing protocol, that
accounts for a large and rapidly growing fraction of the data bytes
sent over the Internet [7]. The resulting increase in Internet traffic
is raising the cost of transit for ISPs, many of which are selling flat-
rate plans with unlimited Internet access to their customers. Thus,
it is not surprising that an ISP would implement strategies to reduce
the amount of BitTorrent traffic generated by its customers.

Java applet

BTTest serverUser

1 Web request

2

3 BitTorrent flows

User BTTest server

4 Trace data

5 Results page

User BTTest server

Figure 1: Overview of the BTTest system: (1) The user initiates the test. (2) The server sends her a Java applet. (3) The applet connects
to the server and emulates a sequence of BitTorrent flows. (4) The applet informs the server whether any flows have been aborted. (5) The
server analyzes the information from both endpoints and displays a result page.

Many ISPs are known to rate-limit the bandwidth consumed by
BitTorrent traffic by deploying traffic shapers in their networks [2].
However, it has been discovered recently that some ISPs do not just
rate-limit BitTorrent flows but block them outright [5] by injecting
forged RST packets into the flows. When the end nodes of a BitTor-
rent transfer receive the RST packets, they immediately terminate
the transfer.
The aggressive blocking of BitTorrent traffic by ISPs has been

widely criticized, and it has generated significant interest in detect-
ing BitTorrent traffic manipulation. While several systems have
already been built to detect in-network BitTorrent blocking, they
either require expert knowledge and specialized tools (which limits
scalability), or they are based on high-level heuristics (which lim-
its reliability). An example of the first category is the Electronic
Frontier Foundation’s ‘Test Your ISP’ project [4], which offers in-
structions for tracing a BitTorrent transfer and checking for forged
packets. This method requires access to two hosts in different ISPs
and involves the use of tools like Wireshark, which is beyond the
capabilities of most end users. An example of the second category
is the network monitor plugin for the popular Azureus BitTorrent
client [8], which reports the number of aborted connections. Since
the plugin does not correlate observations from both endpoints of
an aborted flow, it cannot reliably determine whether the RSTpack-
ets were forged or sent by the other peer.
To our knowledge, BTTest is the first tool to offer highly spe-

cific, reliable blocking detection to a large number of end users.

3. MEASUREMENT METHODOLOGY
In this section, we first present the design of BTTest and then we
describe how BTTest gathers traces of BitTorrent flows.

3.1 Design goals
The goal of BTTest is to detect whether a user’s BitTorrent traffic
is being blocked. More specifically, we wanted to enable the user
to answer the following three questions:

1. Is an ISP blocking BitTorrent flows with forged RST pack-
ets?

2. How is an ISP identifying BitTorrent flows? Is the identifi-
cation based on port numbers, BitTorrent protocol messages,
or both?

3. Does the blocking affect BitTorrent uploads, downloads, or
both?

Note that we focus exclusively on BitTorrent blocking, and only
on one specific technique, namely blocking with forged RST pack-
ets. We do not consider other forms of traffic manipulation, such
as rate-limiting, message-dropping, or altering of the content. De-
tecting such a broad range of traffic manipulation practices is the
subject of future work.
We wanted to deploy BTTest on a public web server and gather

traces from end users around the world. Hence, another important

handshake

Leecher Seeder

handshake

bitfield

bitfield

interested

unchoke

request

piece

Figure 2: BitTorrent packet exchange in BTTest: The interac-
tion always follows the same fixed script.

design goal for BTTest is that it should be very easy to use. Ideally,
it should be as easy to use as the test sites for measuring Internet
connection speeds [9].

3.2 BTTest overview
To detect whether BitTorrent flows are blocked, BTTest emulates
a series of BitTorrent flows between the user’s host and a central
BTTest server. During each flow, BTTest collects a packet trace,
and it closely monitors both endpoints for any error conditions that
might cause the flow to be aborted. If the flow is aborted without
an apparent cause, BTTest checks the packet trace for additional
control packets that were not sent by either of the endpoints. If such
packets are found, BTTest reports this as evidence of blocking.
BTTest requires no special expertise and can be run from any

machine that has a web browser with Java support. This ensures
that it is available to a wide range of users. Figure 1 shows an
overview of our prototype system. When a user visits the BTTest
website and requests a measurement of her access link, a Java ap-
plet is downloaded to her web browser which connects1 to our cen-
tral BTTest server. This server is located in a network that is known
not to block BitTorrent flows, so we can be sure that if any block-
ing is observed, it is performed on a link near the user’s host. The
applet then emulates a sequence of BitTorrent flows and reports the
results back to the server. Finally, the browser displays a results
page, which reports whether any blocking was observed.

3.3 Emulating BitTorrent flows
BTTest emulates BitTorrent flows between end hosts and test
servers, using the standard BitTorrent protocol [6]. The interaction
always follows the same fixed script, which is shown in Figure 2.

1To avoid problems with NAT and firewalls, the connection is al-
ways initiated by the user-side applet.

The flow can be either a downstream flow (in which data is trans-
ferred from the server to the user’s host) or an upstream flow. In
the following, we will refer to the sending endpoint as the seeder,
which claims to already have all pieces of a file, and to the other
endpoint as the leecher, which claims to have no pieces so far.
The leecher begins by exchanging a handshakemessage with

the seeder. This is followed by an exchange of bitfield mes-
sages, which indicate the data segments that are available lo-
cally. Here, the seeder reports that it has all the segments, while
the leecher reports that it has none. Next, the leecher sends an
interested message to indicate that it wants to download seg-
ments, and the seeder grants it access by sending an unchoke
message. During the remainder of the flow, the leecher downloads
as many segments as it can; it repeatedly sends a request mes-
sage to ask for a random segment, and the server returns a piece
message that contains the segment. Since the content does not mat-
ter for our experiment, we fill each segment with random bytes.

3.4 BitTorrent test suite
To determine how ISPs identify BitTorrent traffic, BTTest actually
runs multiple flows with different parameters. Specifically, it varies
the following:

• TCP port: Half of the flows use port 6881, a well-known
BitTorrent port. The others use port 4711, which is not asso-
ciated with a specific protocol.

• Direction: Half of the flows transfer content downstream
(from the server to the user’s host), while the others trans-
fer content upstream (from the user’s host to the server).

• Protocol: Half of the flows contain real BitTorrent messages.
The others contain messages of the same size and in the same
order, but filled with random bytes.

BTTest runs each of the eight possible combinations twice, for
a total of 16 test flows. Each BitTorrent flow lasts for ten2 sec-
onds, unless it is aborted earlier. Thus, the total number of bytes
transferred depends on the available bandwidth on the path between
the user’s host and the server. By observing which of the tested
flows are aborted, BTTest can infer how BitTorrent traffic is identi-
fied, i.e., which features actually trigger the blocking. The four test
flows with random data over a non-BitTorrent port serve as a “san-
ity check”; they show whether the BTTest applet can communicate
with our test servers at all.

3.5 Trace collection
For each emulated flow, BTTest collects two pieces of information:
(1) On the server side a complete link-level packet trace (analogous
to tcpdump), and (2) on the user side any Java exceptions the
applet observed during the flow, including the point in the transfer
where the connection was closed. We refer to these two items as a
result, and to the set of all 16 results for a single host as a result set.
Ideally, BTTest would gather a packet trace on the user’s host

as well. However, there is no easy way to take such a trace from
a Java applet running in a web browser, and in any case, admin-
istrator privileges (and thus a considerable amount of trust) would
be required on most operating systems. Therefore, we had to find
another way to determine whether the host had seen a connection
reset from the server. Unfortunately, a connection reset manifests
itself in Java as a generic IOException; the real cause is men-
tioned only in the string representation, which can vary between

2The flows are longer than strictly necessary because we also mea-
sure throughput. However, this data is not used in the present paper.

JVMs and between different languages. Our current prototype rec-
ognizes the most common strings directly and logs any other strings
for further analysis.

4. TRACE ANALYSIS
We now describe the analysis BTTest performs on the gathered
data, and we explain the types of blocking it can detect.

4.1 Sanitizing traces
As described in Section 3.4, BTTest tries to run a sequence of 16
flows between the user’s host and the server. However, some hosts
abort the test early or experience problems when running theapplet.
Therefore, BTTest only considers a result set when the following
two conditions hold:

• All 16 flows were tested and produced a result. Result sets
which do not contain results for all 16 tests are not considered
in the results below. This can be caused by the user closing
her web browser or browsing to another site, or by a crash of
the applet.

• All 4 TCP “sanity check” flows were able to send some

data. Result sets where at least one of the sanity check flows
had no data packet ACKed (in the case of a download) or
received (in the case of an upload) are discarded. This indi-
cates the applet was unable to contact our web server, which
could be caused by misconfigured NATs, firewalls, or Java
applet security policies.

If either of these conditions are not met, BTTest reports an error
to the user.

4.2 Identifying blocked flows
BTTest’s goal is to detect whether middleboxes in the network are
inserting forged RST packets to tear down BitTorrent flows. To de-
tect these inserted packets, BTTest analyzes the server trace along
with any Java exceptions seen by the user-side applet for each flow.
A flow is considered to have been torn down by a forged RST
packet only when all of the following three conditions hold:

• An IOException with a specific set of messages was seen

by our applet. This indicates that an error was observed
with the TCP connection on the user side. BTTest looks
for the messages “Connection reset by peer” or “An exist-
ing connection was forcibly closed by the remote host” in
the IOException, which indicate that the host has received a
RST packet.

• The server’s packet trace contains at least one incoming

RST packet. This RST packet causes the connection to be
torn down at the server.

• The server’s packet trace contains no outgoing RST

packets before a FIN or RST packet was received. Once
the server receives a FIN or RST packet, the connection is
torn down. Thus, any subsequent data packets received on
the connection will be naturally responded to with RSTs.

The presence of all three conditions strongly indicates that a
forged RST caused the flow to be torn down. The first two con-
ditions indicate that a RST was received at both the server and the
user’s host. While we cannot say for sure that the user’s host re-
ceived a RST packet (as we do not have a packet-level trace from
the host), we only look for IOExceptions with messages that are
caused by the receipt of a RST packet. The third condition indi-
cates that the server did not initiate the connection tear-down (in

other words, it received either a FIN or a RST before it sent any
RSTs). Thus, BTTest detects forged RSTs by looking for flows (1)
which were torn down by a RST received at the user’s host and/or
server and (2) which contain no RSTs sent by the user’s host or the
server before the connection was torn down.

4.3 Detecting BitTorrent blocking
We now describe how BTTest uses the information about blocked
flows to detect BitTorrent blocking, and to infer how BitTorrent
flows are identified by the middlebox. Our working hypothesis is
that the identification could be based on three flow characteristics:
the TCP port number of the flow, the BitTorrent messages in the
flow, and the direction of the flow.
Recall that for each test, BTTest runs two identical flows, so it

obtains two results. BTTest considers a test to have been affected
by forged RSTs if either of the two flow results indicates forged
RSTs. For simplicity, we call the test to have failed in this case;
otherwise, we say that the test has succeeded.
BTTest then looks for BitTorrent blocking behavior by examin-

ing the result sets for each direction separately. If all tests in one
direction using the BitTorrent ports fail regardless of whether Bit-
Torrent data or random data was sent, BTTest reports BitTorrent
blocking based on BitTorrent ports in that direction. If all the tests
in one direction using the BitTorrent messages fail, regardless of
the port on which the test runs, BTTest reports BitTorrent blocking
based on BitTorrent messages in that direction.

4.4 Limitations
In its current form, BTTest can only detect a single form of traffic
manipulation. It considers only BitTorrent traffic, and only block-
ing by injected control packets. BTTest currently does not look
for traffic throttling, packet dropping, or packet manipulation. Ex-
tending BTTest to test for such additional behavior is the subject of
future work.
Also, BTTest cannot determine at which point along the path the

forged RST packets are generated. A typical Internet path between
a host and our measurement servers is likely to cross multiple ISPs.
BTTest cannot determine which ISP is responsible for tearing down
BitTorrent connections. Developing techniques which use network
tomography to pinpoint the location of the forged RST packets is
the subject of ongoing work.
Finally, BTTest’s centralized architecture makes it possible for

ISPs to avoid detection by whitelisting the BTTest servers. This is
unlikely to have affected the data we present in this paper, but it
may become a problem once BTTest is more widely known. We
are currently working on a decentralized version of BTTest, which
would make whitelisting by ISPs much more difficult.

5. RESULTS
In this section, we describe how we collected a set of traces from
our public BTTest server, and we present results from our analysis
of these traces.

5.1 Data set
We deployed BTTest on a publicly accessible web server at
http://broadband.mpi-sws.org/transparency/bttest.php. Initially,
we invited a handful of our colleagues and friends to test their ISPs,
and we asked them to spread the invitation to their friends. After
the first week, the site caught the attention of a few influential blog-
gers, and hundreds of new users tested their ISPs each day.
From March 18th to July 25th, 2008, our BTTest servers col-

lected a total of 47,318 result sets from end users connected to
1,987 ISPs world-wide. 146 result sets did not contain results for

all 16 flows, and a further 17 failed to send data during at least one
of the sanity-check flows. In these cases, BTTest reported an error
to the user, so we removed these sets.
Some users ran our test multiple times. To avoid biasing our

results, for each IP address, we considered only the first result set
that passes the two conditions above, and we ignored all other result
sets for that IP address. After removing the duplicate tests, we were
left with 41,109 result sets.
We found evidence of BitTorrent blocking in 3,353 (8.2%) of the

41,109 result sets. In the rest of this section, we take a closer look
at the hosts that observed blocking.

5.2 Where are the blocked hosts located?
First, we examined the countries in which hosts observed BitTor-
rent blocking. In total, our test was run from users in 135 coun-
tries. Most of our users came from North America (44.3%), Europe
(26.7%), and South America (17.9%).
Table 1 lists all countries where we found BitTorrent blocking

for at least one host. Our results indicate widespread BitTorrent
blocking only for the USA and for Singapore. Interestingly, even
within these countries, we observed blocking only for hosts belong-
ing to a few ISPs.
Next, we looked at the ISPs whose hosts were affected by Bit-

Torrent blocking. Overall, we found that hosts of 47 ISPs experi-
enced blocking; the ISPs are listed in Table 1, along with the num-
ber of hosts we tested from each ISP and the number of hosts whose
BitTorrent flows were blocked. The results show that not all hosts
of these ISPs are affected by blocking.
We do not have enough data to determine why only some (but

not all) hosts of an ISP are subjected to blocking, but there are
several possible explanations. For example, the middleboxes that
block BitTorrent transfers might not be deployed on all of an ISP’s
network paths, or blocking might depend on the current load of
the network. Also, some ISPs might allow BitTorrent traffic up to a
certain threshold and apply the blocking to the “heavy hitters” only.

5.3 How do ISPs identify BitTorrent flows?
Next, we wanted to understand what flow properties ISPs were us-
ing to detect and block BitTorrent flows. We examined each of the
three flow characteristics BTTest varies in the test suite, and we de-
termined how many of the 3,353 result sets contained evidence of
blocking based on these characteristics.

• TCP port: We found that only 530 (15.8%) of the result
sets showed evidence of blocking based on BitTorrent ports,
regardless of whether or not the flows actually contained Bit-
Torrent messages. Thus, blocking of TCP connections based
only on well-known BitTorrent ports seems to exist, but does
not appear to be widespread.

• Direction: We found that 3,335 (99.5%) of the result sets
contained evidence of blocking in the upstream direction, but
only 71 (2.1%) of them contained evidence of blocking in
the downstream direction. Thus, ISPs seem to be blocking
primarily BitTorrent uploads and are rarely interfering with
BitTorrent downloads.

• Protocol: Finally, we found that 3,293 (98.2%) of the re-
sult sets contained evidence of blocking based on BitTorrent
messages. Thus, ISPs appear to be using deep packet inspec-
tion to block BitTorrent flows regardless of the port they are
using.

In summary, the BitTorrent blocking we observed seems to be
focused primarily on BitTorrent uploads, and it appears to affect

Country ISP
measured # blocked

hosts hosts

Australia AARNet 2 1
Belgium MAC Telecom 5 1
Brasil Brasil Telecom 54 1

PaeTec Comm. 9 1
Canada RISQ 7 1

Westman Comm. 4 3
China China Telecom 49 2
Finland Joensuun Elli 1 1
Germany Uni Göttingen 1 1
Greece OTEnet 122 8
Hungary DataNet 17 1
India SonicWall 1 1
Ireland IBIS 9 1
Jamaica Terrenap 1 1
Kuwait Wataniya Telecom 5 4
Malaysia Telekom Malaysia 336 12

Maxis Comm. 9 2
New Zealand TelstraClear 22 1
Saudi Arabia SaudiNet 8 1
Singapore StarHub 156 101
South Korea Korea Telecom 12 5
Spain Telefonica 602 1
Taiwan TANet 214 2

Cheng Kung Univ. 11 2
APOL 10 1

UK Tiscali 354 2

USA

Comcast 4397 2574
Cox 1004 508
RoadRunner 2086 50
Cablevision 646 1
Suddenlink 123 4
Mediacom Comm. 120 17
Clearwire 34 9
Midcontinent Comm. 21 13
General Comm. 13 5
Pavlov Media 11 2
PaeTec Comm. 9 1
PrairieWave 4 2
UC Riverside 4 1
Journey Comm. 3 1
NHCTC 2 1
Bergen.org 1 1
DHL Systems Inc. 1 1
Moric.org 1 1
PSC 1 1
The Shaw Group 1 1
WSIPC 1 1

Table 1: The number of hosts with BitTorrent blocking

grouped by country and ISP.

flows using the BitTorrent protocol regardless of whether or not
they are using a well-known BitTorrent port.

5.3.1 Case study: Comcast

Our analysis found that most ISPs identify BitTorrent flows based
on protocol messages. Presumably, the ISPs are using deep packet
inspection to monitor the protocol messages exchanged and to de-
cide whether a flow should be blocked. To understand the precise
protocol messages that trigger blocking, we ran a controlled ex-
periment using a Comcast host in Seattle, WA, to which we had
access. In this experiment, we emulated BitTorrent transfers just as
BTTest does, but we varied more aspects of the flows; for exam-
ple, we obfuscated BitTorrent protocol messages by flipping bits,
we left out some of the messages, and we changed the number of
advertised pieces in the bitfield message to emulate different
sharing scenarios, e.g., both peers having some but not all pieces of
the file.

We found that, on this particular access link, BitTorrent uploads
were blocked if and only if all of the following conditions hold:

• The server sent a valid BitTorrent handshakemessage,

• The Comcast host sent a valid bitfield message, and

• The Comcast host’s bitfield message indicated that it
had all pieces.

In other words, the uploads of a file were blocked only when the
Comcast host has finished downloading the file and was upload-
ing it altruistically. However, the uploads were not blocked when
the Comcast host was still missing some of the pieces of the file
and thus, appeared to be interested in downloading. From this ex-
periment, we conclude that the middleboxes which tear down Bit-
Torrent connections maintain some per-flow state and inspect the
packet payload for specific protocol messages.
Note that this case study only applies to Comcast. Unfortunately,

we did not have access to hosts connected to other ISPs and were
therefore unable run the same controlled experiment for them.

5.4 When do ISPs block BitTorrent flows?
ISPs that have admitted to blocking BitTorrent flows claim that they
do so only during the hours of peak load, when their networks are
congested. The data we collected with BTTest enables us to check
whether blocking occurs continuously throughout the day or is lim-
ited to just a few hours of the day. For each hour of the day, we
calculated the percentage of result sets that contained evidence of
blocking. For each result set, we inferred the location of the tester
and then computed the local time3 when the test had been per-
formed. We then grouped together measurements from the same
hour. Here we present data for Comcast and Cox because these are
the two ISPs for which we had the most data points.
Figure 3 shows our results. While the number of measurements

per hour shows a diurnal pattern with more measurements in the
evening than in the early morning, the fraction of blocked tests
shows no clear trend. We observed blocking for a significant frac-
tion of the tests throughout the day. Figure 4 groups the result sets
by day of the week instead. Again, there is no clear trend; we
observed a significant fraction of blocked hosts on all days of the
week. Finally, we used a Comcast host under our control in Seat-
tle, WA, to run BTTest at 30-minute intervals for an entire week.
We found that BitTorrent flows were constantly blocked during the
entire week.
In conclusion, our data suggests that BitTorrent flows are being

blocked independent of the time of the day or the day of the week.

5.5 At what stage are flows blocked?
Finally, we took a closer look at the BTTest packet traces to see at
which stage of the BitTorrent protocol the blocking occurred. The
RST packets can be injected at different points in a transfer, that is,
at different stages of the BitTorrent protocol shown in Figure 2. To
perform this analysis, we used the data reported by our user-side
applet about the last message it sent before the connection was torn
down.
In total, we identified four different places in the protocol at

which connections were blocked. We found a very strong corre-
lation in behavior across ISPs, and we observed mostly consistent
behavior for hosts of the same ISP. Due to lack of space, we only
give examples for each categories.

• After the handshake message: For Telekom Malaysia
and Brasil Telecom we observed that the connection with

3We used an IP-to-geolocation tool to infer the timezone of each
tester.

 0

 100

 200

 300

 400

0 4 8 12 16 20

N
u
m

b
e
r

o
f
te

s
ts

Hour of the day (local time)

 0

 20

 40

 60

 80

 100

0 4 8 12 16 20

%
 o

f
b
lo

c
k
e
d
 t
e
s
ts

Hour of the day (local time)

(a) Comcast (USA)

 0

 20

 40

 60

 80

0 4 8 12 16 20

N
u
m

b
e
r

o
f
te

s
ts

Hour of the day (local time)

 0

 20

 40

 60

 80

 100

0 4 8 12 16 20

%
 o

f
b
lo

c
k
e
d
 t
e
s
ts

Hour of the day (local time)

(b) Cox (USA)

Figure 3: Result sets grouped by the hour of the day for Comcast and Cox: BitTorrent flows were blocked at all times of the day.

 0

 200

 400

 600

 800

Sun Tue Thu Sat

N
u
m

b
e
r

o
f
te

s
ts

Day of the week (local time)

 0

 20

 40

 60

 80

 100

Sun Tue Thu Sat

%
 o

f
b
lo

c
k
e
d
 t
e
s
ts

Day of the week (local time)

(a) Comcast (USA)

 0

 40

 80

 120

 160

Sun Tue Thu Sat

N
u
m

b
e
r

o
f
te

s
ts

Day of the week (local time)

 0

 20

 40

 60

 80

 100

Sun Tue Thu Sat

%
 o

f
b
lo

c
k
e
d
 t
e
s
ts

Day of the week (local time)

(b) Cox (USA)

Figure 4: Result sets grouped by the day of the week for Comcast and Cox: Blocking occurred on every day of the week.

BitTorrent messages was torn down immediately after the
handshakemessage was sent by the leecher.

• After the bitfield message: For StarHub, RoadRun-
ner OTEnet, and most other ISPs we observed connection
tear-down for connections with BitTorrent messages after the
leecher sent the bitfieldmessage.

• After the interested message: For most Comcast and
Cox hosts, we observed that the connections with BitTorrent
messages were torn down after the interested message
was sent by the leecher.

• Later in the transfer: Finally, for Comcast, Cox and Media-
com, we observed that connections with random data on Bit-
Torrent ports were occasionally torn down later in the trans-
fer. However, we were unable to determine a common pat-
tern for the exact point where the connection was torn down.

While the types of blocking can sometimes vary even between
hosts of the same ISP, we found that the basic characteristics of
blocking were mostly consistent across hosts and even across some
of the ISPs. Because of this, we suspect that many ISPs are us-
ing similar equipment for traffic identification and reset injection,
e.g., the specialized hardware sold by Sandvine [1]. However, it
is possible that these boxes are configured differently in different
locations or at different times of the day.

6. CONCLUSION AND FUTUREWORK
Recently published reports of access ISPs blocking BitTorrent
transfers by injecting forged RST packets have sparked an inter-
national debate on network neutrality. In this context, the present
paper makes two contributions. First, we presented the design of
BTTest, a reliable and easy-to-use tool that allows end users to de-
tect if BitTorrent traffic is being blocked on their access link. Sec-
ond, we presented results from a large-scale measurement study
that is based on a widely-used public BTTest deployment.
Our current study is limited to detecting BitTorrent blocking,

and there are a number of open challenges and interesting direc-
tions for future work. First, it would be interesting to develop
analysis techniques for detecting other types of traffic manipula-
tion beyond blocking, e.g., BitTorrent traffic shaping. Second, the

centralized architecture of our BTTest tool limits scalability and
is vulnerable to whitelisting by ISPs wishing to avoid detection. It
would be useful to investigate ways to decentralize BTTest to allow
the emulated BitTorrent transfers to be sent between testing peers.
Finally, while our current methodology allows us to detect BitTor-
rent blocking along an Internet path, we cannot diagnose where
along the path the traffic is being blocked, i.e., which ISP is re-
sponsible for blocking BitTorrent. A user could potentially localize
the source of blocking by repeatedly running the test from servers
located at different vantage points in the Internet. By correlating
the blocking data obtained from multiple transfers along different
Internet paths, one could hope to deduce which links are subject to
BitTorrent blocking.

7. REFERENCES
[1] “Sandvine Inc.” http://www.sandvine.com/.

[2] “Packeteer Inc.” http://www.packeteer.com/.

[3] “DslReports: Comcast is using Sandvine to manage P2P connections.”
http://www.dslreports.com/forum/r18323368-Com
cast-is-using-Sandvine-to-manage-P2P-Connections.

[4] “EFF ‘Test Your ISP’ Project.”
http://www.eff.org/testyourisp.

[5] “Comments of Comcast Corporation before the FCC.”
http://fjallfoss.fcc.gov/prod/ecfs/retrieve.
cgi?native_or_pdf=pdf&id_document=6519840991.

[6] “The BitTorrent Protocol Specification, Version 11031.”
http://bittorrent.org/beps/bep_0003.html.

[7] A. Parker, “The true picture of peer-to-peer file sharing.”
http://www.cachelogic.com/research/.

[8] “Vuze Network Status Monitor.”
http://azureus.sourceforge.net/plugin_details.
php?plugin=aznetmon.

[9] “The Global Broadband Speed Test.”
http://www.speedtest.net/.

