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ABSTRACT
We analyse two complementary datasets to quantify the la-
tency variation experienced by internet end-users: (i) a large-
scale active measurement dataset (from the Measurement
Lab Network Diagnostic Tool) which shed light on long-
term trends and regional differences; and (ii) passive mea-
surement data from an access aggregation link which is used
to analyse the edge links closest to the user.

The analysis shows that variation in latency is both com-
mon and of significant magnitude, with two thirds of sam-
ples exceeding 100 ms of variation. The variation is seen
within single connections as well as between connections to
the same client. The distribution of experienced latency vari-
ation is heavy-tailed, with the most affected clients seeing an
order of magnitude larger variation than the least affected. In
addition, there are large differences between regions, both
within and between continents. Despite consistent improve-
ments in throughput, most regions show no reduction in la-
tency variation over time, and in one region it even increases.

We examine load-induced queueing latency as a possible
cause for the variation in latency and find that both data-
sets readily exhibit symptoms of queueing latency correlated
with network load. Additionally, when this queueing latency
does occur, it is of significant magnitude, more than 200 ms
in the median. This indicates that load-induced queueing
contributes significantly to the overall latency variation.
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1. INTRODUCTION
As applications turn ever more interactive, network la-

tency plays an increasingly important role for their perfor-
mance. The end-goal is to get as close as possible to the
physical limitations of the speed of light [25]. However, to-
day the latency of internet connections is often larger than it
needs to be. In this work we set out to quantify how much.
Having this information available is important to guide work
that sets out to improve the latency behaviour of the inter-
net; and for authors of latency-sensitive applications (such
as Voice over IP, or even many web applications) that seek
to predict the performance they can expect from the network.

Many sources of added latency can be highly variable in
nature. This means that we can quantify undesired latency
by looking specifically at the latency variation experienced
by a client. We do this by measuring how much client la-
tency varies above the minimum seen for that client. Our
analysis is based on two complementary sources of data: we
combine the extensive publicly available dataset from the
Measurement Lab Network Diagnostic Tool (NDT) with a
packet capture from within a service provider access net-
work. The NDT data, gathered from 2010 to 2015, com-
prises a total of 265.8 million active test measurements from
all over the world. This allows us to examine the develop-
ment in latency variation over time and to look at regional
differences. The access network dataset is significantly smal-
ler, but the network characteristics are known with greater
certainty. Thus, we can be more confident when interpreting
the results from the latter dataset. These differences between
the datasets make them complement each other nicely.

We find that significant latency variation is common in
both datasets. This is the case both within single connections
and between different connections from the same client. In
the NDT dataset, we also observe that the magnitude of la-
tency variation differs between geographic regions, both be-
tween and within continents. Looking at the development
over time (also in the NDT dataset), we see very little change
in the numbers. This is in contrast to the overall throughput
that has improved significantly.

473

http://dx.doi.org/10.1145/2999572.2999603
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Table 1: Total tests per region and year (millions).

Reg. 2010 2011 2012 2013 2014 2015

AF 0.65 0.63 0.79 0.72 0.76 0.57
AS 7.79 7.45 6.55 5.75 5.83 4.57
EU 35.00 31.12 27.96 22.40 21.23 16.82
NA 11.70 8.51 7.90 7.01 7.06 8.00
SA 2.68 1.73 2.83 2.94 2.05 1.26
OC 1.33 1.33 0.79 0.55 0.65 0.57

Total 59.22 50.81 46.87 39.43 37.60 31.79

One important aspect of latency variation is the corre-
lation between increased latency and high link utilisation.
Queueing delay, in particular, can accumulate quickly when
the link capacity is exhausted, and paying attention to such
scenarios can give insight into issues that can cause real, if
intermittent, performance problems for users. We examine
queueing delay as a possible source of the observed latency
variation for both datasets, and find strong indications that
it is present in a number of instances. Furthermore, when
queueing latency does occur it is of significant magnitude.

The rest of the paper is structured as follows: Section 2 in-
troduces the datasets and the methodology we have used to
analyse them. Section 3 discusses the large-scale variations
in latency over time and geography, and Section 4 examines
delay variation on access links. Section 5 presents our exam-
ination of load-induced queueing delay. Finally, Section 6
discusses related work and Section 7 concludes the paper.

2. DATASETS AND METHODOLOGY
The datasets underlying our analysis are the publicly avail-

able dataset from Measurement Lab (M-Lab), specifically
the Network Diagnostic Tool (NDT) data [1], combined with
packet header traces from access aggregation links of an in-
ternet service provider. This section presents each of the
datasets, and the methodology we used for analysis.

2.1 The M-Lab NDT data
The M-Lab NDT is run by users to test their internet con-

nections. We use the 10-second bulk transfer from the server
to the client, which is part of the test suite. When the test is
run, the client attempts to pick the nearest server from the
geographically distributed network of servers provided by
the M-Lab platform. The M-Lab servers are globally dis-
tributed1, although with varying density in different regions.

The server is instrumented with the Web100 TCP kernel
instrumentation [21], and captures several variables of the
TCP state machine every 5 ms of the test. Data is available
from early 2009, and we focus on the six year period 2010–
2015, comprising a total of 265.8 million test runs. Table 1
shows the distribution of test runs for the years and regions
we have included in our analysis.

Since the NDT is an active test, the gathered data is not a

1See http://www.measurementlab.net/infrastructure for
more information on the server placements.
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Figure 1: Delays computed from the TCP connection setup.

representative sample of the traffic mix flowing through the
internet. Instead, it may tell us something about the links
being traversed by the measurement flows. Looking at links
under load is interesting, because some important effects can
be exposed in this way, most notably bufferbloat: Loading
up the link causes any latent buffers to fill, adding latency
that might not be visible if the link is lightly loaded. This
also means that the baseline link utilisation (e.g., caused by
diurnal usage patterns) become less important: an already
loaded link can, at worst, result in a potentially higher base-
line latency. This means that the results may be biased to-
wards showing lower latency variation than is actually seen
on the link over time. But since we are interested in estab-
lishing a lower bound on the variation, this is acceptable.

For the base analysis, we only exclude tests that were trun-
cated (had a total run time less than 9 seconds). We use
the TCP RTT samples as our data points, i.e., the samples
computed by the server TCP stack according to Karn’s algo-
rithm [23], and focus on the RTT span, defined as the dif-
ference between the minimum and maximum RTT observed
during a test run. However, we also examine a subset of the
data to assess what impact the choice of min and max ob-
served RTT has on the data when compared to using other
percentiles for each flow (see Section 3.3).

2.2 The access aggregation link data
The second dataset comes from two access aggregation

links of an internet service provider. The links aggregate the
traffic for about 50 and 400 clients, respectively, and connect
them to the core network of the service provider. The traffic
was captured passively at different times distributed over an
eight-month period starting at the end of 2014. The average
loads on the 1 Gbps links were, respectively, about 200 and
400 Mbit/s during peak hours. This dataset is an example of
real internet traffic, since we are not generating any traffic.

We analyse the delay experienced by the TCP connection
setup packets in this dataset. The TCP connection setup con-
sists of a three-way handshake with SYN, SYN+ACK, and
ACK packets, as illustrated in Figure 1.
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Figure 2: RTT values computed over individual flows. (a) Min and max RTT and the span between them, for all flows. (b) Distribution
of per-flow RTT span per continent (2015 data). (c) Distribution of per-flow RTT span per country in Africa (2015 data for countries with
n > 10,000).

For the purpose of this paper, we study the client side of
connections made to the public internet. That is, we study
the path from the client, over the access link, to the measured
aggregation link. This allows us to examine increased delays
due to excess queuing in consumer equipment, and ensures
that the path we measure is of known length.

We examine the data for outgoing connections, i.e., con-
nections that are initiated from the access side and connect
to the public internet, which means we compute the round-
trip delay between the SYN+ACK packet and the first ACK
packet in the three-way handshake. The variation in these
delay values is likely to be caused by queueing, since con-
nection endpoints normally respond immediately. We also
compute the instantaneous load at each sample and examine
the correlation between delay and load for a few clients.

2.3 Sources of latency variation
Naturally, the observed latency variation can have several

causes [6]. These include queueing delay along the path, de-
layed acknowledgements, transmission delay, media access
delays, error recovery, paths changing during the test and
processing delays at end-hosts and intermediate nodes. For
the main part of our analysis, we make no attempt to distin-
guish between different causes of latency variation. How-
ever, we note that latency variation represents latency that
is superfluous in the sense that it is higher than the known
attainable minimum for the path. In addition, we analyse a
subset of each dataset to examine to what extent queueing
latency is a factor in the observed latency variation.

We believe that the chosen datasets complement each other
nicely and allow us to illuminate the subject from different
angles, drawing on the strengths of them both. The NDT
dataset, being based on active measurements, allows us to
examine connections that are being deliberately loaded, and
the size of the dataset allows us to examine temporal and ge-
ographic trends. The access network dataset, on the other
hand, has smaller scope but the examined path is known;
and so we can rule out several sources of delay and be more
confident when interpreting the results.

3. LATENCY VARIATION OVER TIME
AND GEOGRAPHY

In this section, we analyse the M-Lab NDT dataset to ex-
plore geographic differences, and also look at the develop-
ment of the RTT span over time. For an initial overview, Fig-
ure 2a shows the distribution of the RTT span in the whole
M-Lab NDT dataset, along with the minimum and max-
imum RTTs it is derived from. This shows a significant
amount of extra latency: two thirds of samples exceed 100 ms
of RTT span, with the 95th percentile exceeding 900 ms.

3.1 Geographic differences
Figure 2b shows the RTT span distributed geographically

per continent for the 2015 data. This shows a significant
difference between regions, with the median differing by
more than a factor of two between the best and the worst
region. Looking within these regions, Figure 2c shows the
per-country distributions within Africa. Here, the heavy tail
of latencies above one second affects as much as 20% of the
samples from the country with the highest latency. These
high latencies are consistent with previous studies of African
internet connections [8]. The data for Europe (omitted due
to space constraints) shows that the difference among Eu-
ropean countries is of the same magnitude as the difference
among continents.

3.2 Development over time
Figure 3a shows the minimum RTT and the RTT span for

each of the years in the dataset. While the minimum RTT
has decreased slightly over the years, no such development
is visible for the span. This is striking when compared to
the development in throughput, which has increased consis-
tently, as shown in Figure 3b. Some of this increase in aver-
age throughput may be due to other factors than increase in
link capacity (e.g. protocol efficiency improvements). Even
so, the disparity is clear: while throughput has increased,
RTT span has not decreased, and the decrease in minimum
RTT is slight.

Looking at this development for different continents, as
shown in Figure 3c, an increase in latency span over the
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Figure 3: Development over time of per-flow latency and throughput in the NDT dataset. (a) Min RTT and RTT span, per year. (b) Per-flow
average throughput, per year. (c) The development in latency span over time for North America and Africa.

years is seen in North America while Africa has seen a con-
sistent, but small, reduction in latency span over time. This
latter development is most likely due to developments in in-
frastructure causing traffic to travel fewer hops, thus decreas-
ing the potential sources of extra latency.

3.3 Different measures of latency span
The way the NDT dataset is structured makes the per-flow

min and max RTT values the only ones that are practical
to analyse for the whole dataset. To assess what effect this
choice of metric has on the results, we performed a more
detailed analysis for a subset of the data. Figure 4a shows
the latency span distribution for the data from August 2013
when using percentiles of the per-flow RTT measurements
ranging from 90 to 99 in place of the max. We see that in
this case the median measured RTT span drops to between
151 ms and 204 ms, from 250 ms when using the max — a
drop of between 17% and 40%. It is not clear that the max
is simply an outlier for all flows; but for those where it is,
our results will overestimate the absolute magnitude of the
RTT span. However, the shape of the distribution stays fairly
constant, and using the max simply leads to higher absolute
numbers. This means that we can still say something about
trends, even for those flows where the max RTT should be
considered an outlier.

4. LATENCY VARIATION IN THE AC-
CESS NETWORK

In this section we analyse the latency variation of TCP
3-way handshakes in the access network dataset. Figure 4b
shows the distribution of the per-client RTT variation, com-
puted as the span between the per-client minimum delay and
the respective percentiles of samples to that client. To en-
sure that we do not mistakenly use a too low minimum delay
value, only handshakes which did not have any SYN+ACK
retransmissions are considered when computing the mini-
mum.

For about half of the client population covered by the link
shown in Figure 4b, delay increases substantially over the
minimum at times. For example, 20% of the clients experi-
ence increased delays of more than about 80 ms, at least 5%

of the time. The second link shows similar behaviour, but
has more clients that are affected by increased delay.

Another interesting feature of the data is that there is a
significant difference in the magnitude of the latency span
depending on which percentile of latency measurements one
looks at. That is, if we consider the per-user 99th percentile
of latency rather than the 95th, suddenly more than half the
users experience latency variations in excess of 100 ms for
the first link, and more than 80% for the second link. This
underscores the fact that delay spikes can be a very transient
problem, but one that is of significant magnitude when it
does occur.

Comparing with the NDT dataset, the analysis of the ac-
cess link data shows a lower frequency of latency variation,
as well as a lower magnitude of the variation when it does
occur. However, both datasets show that significant latency
variation occurs for a considerable fraction of users. We at-
tribute the difference in magnitude to the difference in mea-
surement methods: the NDT measurements are taken while
the link is deliberately loaded, while not all measurements
from the access network are taken from saturated links.

5. EXAMINING QUEUEING LATENCY
As mentioned in Section 2.3, latency variations can have

many causes, and without having insight into the network
path itself it can be difficult to identify which are the most
prevalent. However, experience from more controlled envi-
ronments (such as experiments performed to evaluate AQM
algorithms [14]) suggests that queueing delay can be a sig-
nificant source. Due to the magnitude of the variation we see
here, we conjecture that this is also the case in this dataset.
To examine this further, in this section we present an anal-
ysis of the queueing delay of a subset of the traffic in both
datasets. We aim to perform a conservative analysis, and so
limit ourselves to tests for which it is possible to identify
queueing latency with high certainty.

5.1 Latency reductions after a drop
Our analysis is based upon a distinct pattern, where the

sample RTT increases from the start of a flow until a con-
gestion event, then sharply decreases afterwards. An exam-
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Figure 4: (a) Latency span for all flows in August 2013 when using different percentiles to determine the max RTT. NDT dataset. (b) Client
side round trip delay percentiles over all clients relative to the minimum delay. A full day of the first aggregation link in the access network
dataset. (c) Distribution of the magnitude of detected queueing delay, per year. Flows with detected queueing latency, NDT dataset.

ple of this pattern is seen in Figure 5. This pattern is due
to the behaviour of TCP: The congestion control algorithm
will increase its sending rate until a congestion event occurs,
then halve it. If a lot of packets are queued when this hap-
pens, the queue has a chance to drain, and so subsequent
RTT samples will show a lower queueing delay. Thus, it is
reasonable to assume that when this pattern occurs, the drop
in RTT is because the queue induced by the flow dissipates
as it slows down. So when we detect this sharp correlation
between a congestion event and a subsequent drop in RTT,
we can measure the magnitude of the drop and use it as a
lower bound on queueing delay.
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Figure 5: Example of the drop in RTT after a congestion event.
The red cross marks the congestion event.

We limit the analysis to flows that have exactly one con-
gestion event, and spend most of its lifetime being limited by
the congestion window. Additionally, we exclude flows that
are truncated or transfer less than 0.2 MB of data. For the re-
maining flows, we identify the pattern mentioned above by
the following algorithm:

1. Find three values: first_rtt, the first non-zero RTT sam-
ple; cong_rtt, the RTT sample at the congestion event;
and cong_rtt_next, the first RTT sample after the event
that is different from cong_rtt.

2. Compute the differences between first_rtt and cong_rtt
and between cong_rtt and cong_rtt_next. If both of
these values are above 40 ms,2 return the difference be-
tween cong_rtt and cong_rtt_next.

2The threshold is needed to exclude naturally occurring vari-
ation in RTT samples from the detection. We found 40 ms

We add a few minor refinements to increase the accuracy
of the basic algorithm above:3

1. When comparing first_rtt and cong_rtt, use the median
of cong_rtt and the two previous RTT samples. This
weeds out tests where only a single RTT sample (co-
inciding with the congestion event) is higher than the
baseline.

2. When comparing cong_rtt and cong_rtt_next, use the
minimum of the five measurements immediately fol-
lowing cong_rtt_next. This makes sure we include cases
where the decrease after the congestion event is not in-
stant, but happens over a couple of RTT samples.

3. Compute the maximum span between the largest and
smallest RTT sample in a sliding window of 10 data
samples over the time period following the point of
cong_rtt_next. If this span is higher than the drop in
RTT after the congestion event, filter out the flow.

By applying the algorithm to the data from 2010 through
20144, we identified a total of 5.7 million instances of the
RTT pattern, corresponding to 2.4% of the total number of
flows. While this is a relatively small fraction of the flows, in
this section we have aimed to be conservative and only pick
out flows where we can algorithmically identify the source
of the extra latency as queueing delay with a high certainty.
This does not mean, however, that queueing delay cannot
also be a source of latency variation for other flows.

Figure 4c shows the distribution of the magnitude of the
detected queueing delay. We see that this follows a simi-
lar heavy-tailed distribution as the total latency variation. In

empirically to be a suitable conservative threshold: It is the
lowest value that did not result in a significant number of
false positives.
3The full code and dataset is published at http://www.cs.kau.
se/tohojo/measuring-latency-variation/
4The Measurement Lab dataset was restructured in the mid-
dle of 2015, making it difficult to apply the detailed analysis
for the 2015 data. For that reason, we have not included
2015 in these results.
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Figure 6: Delay and instantaneous outbound rate for two clients in the access network dataset. The histograms on the axes show the marginal
distributions for the rate and delay samples.

addition, of those tests that our algorithm identifies as expe-
riencing self-induced queueing, a significant percentage see
quite a lot of it: 80% is above 100 ms, and 20% is above
400 ms. We see a downward trend in the queueing delay
magnitude from 2010 to 2012/13, with a slight increase in
2014.

Based on our analysis of this subset of the whole dataset,
we conclude that (i) queueing delay is present in a non-trivial
number of instances and that (ii) when it does occur, it is of
significant magnitude.

5.2 Delay correlated with load
A network is more likely to exhibit queueing delay when it

is congested. Thus, delay correlated with load can be an in-
dication of the presence of queueing delay. When analysing
the access network dataset, we identified several cases where
strong correlation between delay and load existed. In this
section we look at two examples of this behaviour.

Figures 6a and 6b show the correlation between client side
delay and the instantaneous outbound load during the 200 ms
just preceding each delay sample. The sample period is one
hour during peak time (20.30–21.30).

For the first client, we see two clusters of delay/load val-
ues, indicating two kinds of behaviour. There is one clus-
ter just under a performance ceiling of 1 Mbit/s, but with
increased round-trip delays up to almost 200 ms. This be-
haviour clearly indicates a saturated uplink where the up-
stream bottleneck limits the throughput and induces queue-
ing latency. The other cluster is centred around about 0.8
Mbit/s and 80 ms increase in round-trip delay. This indi-
cates an equilibrium where the outbound capacity is not the
primary bottleneck, and so doesn’t induce as much queueing
delay. In addition to these clusters, there are some scattered
data points up to just over 3 s increase in round-trip delay
(not all of which are visible on the figure). The second client
is clearly limited by a low uplink capacity, resulting in very
large delays — up to about 1.5 s, which is consistent with
the low capacity resulting in large queue drain times.

Together, the behaviour of these two client links (along
with additional clients we have examined but not included
here) clearly show that load-induced queueing delay is one
source of the latency variation we have observed in the anal-
ysis of the whole dataset. According to the service provider,
the access network otherwise does not have the amount of
buffering needed for the delays we see in our measurements,
pointing to large buffers in consumer equipment as the likely
culprit.

5.3 Discussion
The analysis presented in this section indicates that excess

queueing latency (i.e., bufferbloat) is indeed a very real and
routinely occurring phenomenon. While we do not claim
to have a means of accurately quantifying bufferbloat in all
instances, we have sought to compensate for the lack of ac-
curacy by erring on the side of caution in identifying bloat.
And the fact that signs of bufferbloat so readily appears in
both datasets constitutes a strong indicator that bufferbloat
is indeed prevalent in real networks.

Another finding is that in the cases where bufferbloat does
appear, it tends to be significant: most often on the order of
several hundreds of milliseconds. This means that when buf-
ferbloat does appear, it is quite noticeable and a considerable
inconvenience for the end-user.

6. RELATED WORK
Several other studies have looked at the latency charac-

teristics of internet traffic. These fall roughly into three cat-
egories: studies based on large-scale active measurements,
studies based on targeted active measurements of a more
limited scope, and passive measurements performed at vari-
ous vantage points in the network. In this section we provide
an overview of each of these categories in turn.

6.1 Large-scale active measurements
The speedtest.net measurement tool and the Netalyzr test

suite are popular performance benchmark tools in wide use.
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Canadi et al [7] perform a study based on 54 million test runs
from the former which shows very low baseline (unloaded)
latencies, but considers neither latency variation nor devel-
opment over time. Kreibich et al [18] base their study on
130,000 tests from the latter, and show queueing latency on
the order of hundreds of milliseconds, but does not consider
differences over time or between regions.

Another approach to large-scale active measurements is
taken by the BISMark and SamKnows measurement plat-
forms, both of which provide instrumented gateways to users.
A study based on this data by Sundaresan et al [26] mea-
sures baseline and under-load latency and shows significant
buffering in head-end equipment. Chetty et al [8] also use
BISMark data (as well as other sources) to measure broad-
band performance in South Africa. Consistent with our re-
sults for this continent, they find that latencies are generally
high, often on the order of several hundred milliseconds.

Another large-scale active measurement effort is the Dasu
platform [24], which is a software client users install on their
machines. This study does not focus on latency measure-
ments, but it includes HTTP latency figures which indicate a
large regional variation, not unlike what we observe.

Finally, the M-Lab Consortium has studied ISP intercon-
nections [19] using the same data as we use. However, this
study only considers aggregate latency over large time scales.

6.2 Targeted active measurements
Dischinger et al [11] and Choy et al [10], both use ac-

tive probing of residential hosts to measure network con-
nections. The former study finds that queueing delay in the
broadband equipment is extensive, while the latter finds that
a significant fraction of users experience too high latency to
run games in the cloud. Bischof et al [5] perform a slightly
different type of measurements, piggy-backing on the Bit-
Torrent protocol, and find a majority of the users see median
last-mile latency between 10 and 100 ms, with the 95th per-
centile of seeing several hundred milliseconds. A similar
conclusion, but specifically targeted at assessing queueing
latency, is reached in [9], which estimates that 10% of users
experience a 90th percentile queueing latency above 100 ms.

Another type of targeted active measurements are perfor-
med by clients under the experimenters’ control to exam-
ine the access network. These types of experiments are per-
formed by, e.g., Jiang et al [17] and Alfredsson et al [3] to
measure bufferbloat in cellular networks. Both studies find
evidence of bufferbloat on the order of several hundred ms.

6.3 Passive measurements
Several studies perform passive measurements of back-

bone or other high-speed links between major sites [12, 15,
16]. They generally find fairly low and quite stable latencies,
with the backbone link experiencing latencies dominated by
the speed of light, and the others generally seeing median
latencies well below 100 ms. Jaiswal et al [15] additionally
measure RTT variations and find that the median variation
is around 2–300 ms and the 95th percentile variation is on
the order of several seconds. In addition, Pathak et al [22]
perform passive measurement of latency inflation in MPLS

overlay networks and find that inflation is common, mostly
due to path changes in the underlying tunnels.

Another technique for passive measurements consists of
taking captures at the edge of a network and analysing that
traffic. Aikat et al [2] and Allman [4] both employ this tech-
nique to analyse the RTT of TCP connections between hosts
inside and outside the network where the measurement is
performed. Both studies analyse the latency variation, Aikat
et al finding it to be somewhat higher than Allman.

Another vantage point for passive measurements is at edge
networks. Such studies are performed by Vacirca et al [27]
and Maier et al [20] for mobile and residential networks, re-
spectively. The former study finds that RTT can vary greatly
over connections, while the latter finds that the baseline la-
tency of the TCP handshake is dominated by the client part.

Finally, Hernandez-Campos and Papadopouli [13] com-
pares wired and wireless traffic by means of passive packet
captures. They find that wireless connections experience a
much larger RTT variation than wired connections do.

7. CONCLUSIONS
We have analysed the latency variation experienced by

clients on the internet by examining two complementary da-
tasets from active measurement tests and from traffic cap-
tures from an ISP. In addition, we have analysed a subset
of the data to attempt to determine whether load-induced
queueing delay in the network can be part of the reason for
the large variations. Based on our analysis, we conclude:

– Latency variation is both common and of significant
magnitude, both within single connections and between con-
nections to the same client. This indicates that it has a large
potential to negatively affect end-user perceived performance.

– The worst affected clients see an order of magnitude
larger variation than the least affected, and the choice of per-
client percentile for the measured latency significantly af-
fects the resulting conclusions. This indicates that latency
spikes are transient and non-uniformly distributed.

– While throughput has increased over the six years we
have examined, both minimum latency and latency variation
have remained stable, and even increased slightly. This indi-
cates that the improvements in performance afforded by the
development of new technology are not improving latency.

– We find that in both datasets load-induced queueing de-
lay is an important factor in latency variation, and quite sig-
nificant in magnitude when it does occur. This indicates that
load-induced queueing does in fact contribute significantly
to the variation we see in overall latency behaviour.
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